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Summary

Many analyses of continuously marked spatial point patterns assume that the
density of points, with differing marks, is identical. However, as noted in the
originative paper of Goulard et al. (1996), such an assumption is not realistic
in many situations. For example, a stand of forest may have many more small
trees than large, hence the model should allow for a higher density of points
with small marks. In addition, as suggested by Ogata & Tanemura (1985), the
interaction between points should be a function of their mark, allowing, for
example, the range of interaction for large trees to exceed that of smaller trees.
The aforementioned articles use frequentist inferential techniques, but inter-
val estimation presents difficulties due to the complex distributional proper-
ties of the estimates. We suggest the use of Bayesian inferential techniques.
Although a Bayesian approach requires a complex, computational implemen-
tation of (reversible jump) MCMC methodology, it enables a wide variety of
inferences (including interval estimation). We demonstrate our approach by
analyzing the well known Norway spruce dataset.

Keywords: Markov chain Monte Carlo (MCMC), reversible jump MCMC,
pairwise interacting point process, mark chemical activity function
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Figure 1: Location of n = 134 Norway spruce trees in a 56 × 38 meter field.
Character size is proportional to the trunk diameter.
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1 Introduction

A spatial point pattern describes the spatial location of events in a region.
For example, a spatial point pattern may describe the location of trees in a
forest or the location of glacial deposits (drumlin) in a field. Many times a
continuous mark is associated with each observed point; for example, Figure 1
depicts a marked spatial point pattern of n = 134 Norway spruce trees in a
56 × 38 meter field located in Germany (Fiksel 1984). The location of each
tree is plotted with a + while the trunk diameter of each tree is plotted as a
circle proportional to the trunk diameter.

A salient feature of the spruce dataset is that there is a higher density of small
trees growing in the region. Moreover, it can be seen, upon closer inspection,
that the tree locations exhibit inhibition in their spacing. In other words,
only a few trees are close together (say within 2 meters); a completely random
(i.e. binomial) process with the same number of points would exhibit many
more close points. Quite simply, there is interaction between the trees, most
likely due to biological competition. This inhibitive spacing is sometimes
called spatial regularity, and constitutes the type of patterns considered in the
remainder of this paper. Less obvious, perhaps, is that the spatial regularity
depends upon the marks; large trees (with large trunk diameters) tend to
grow quite removed from one another, while smaller trees are better capable
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of growing in closer proximity. Practitioners commonly ignore the marks
because of the heightened modeling complexity. However, such information
is crucial to fully understanding the underlying process, and hence should
not be ignored.

In modeling unmarked spatial point patterns, Poisson processes (with known
normalization constant) are commonly used, although such models are un-
able to account for interaction between points. Gibbsian point processes can
account for such interaction, but involve an intractable normalizing constant
which complicates inference (Gibbsian models were originally used in statisti-
cal physics to study the interaction of particles in fluids and gases). Because
Ripley (1977) believed that the interaction between individuals may depend
upon the distance between them, he suggested using a pairwise interacting

point process (a special case of a Gibbs process) which describes the interac-
tion between pairs of points by a function (called a pair potential function) of
the interpoint Euclidean distance. A pairwise interacting point process is the
most common form of a Gibbs point process. For more information about
spatial point processes, see for example Baddeley & Turner (2000), Bognar
(2005), Bognar & Cowles (2004), Diggle (2003), Diggle et al. (1987, 1994),
Harkness & Isham (1983), Heikkinen & Penttinen (1999), Mateu & Montes
(2001), Møller & Waagepetersen (2004), Ogata & Tanemura (1981, 1984,
1986, 1989), Penttinen (1984), Stoyan & Stoyan (1998) and van Lieshout
(2000).

Inference for marked spatial point processes has received much less atten-
tion in the literature. Fiksel (1984) generalized the inferential method of
Takacs (1986) to accommodate marked Gibbsian processes, while Ogata &
Tanemura (1985) extended their approximate maximum method using virial
expansions to the marked case. Jensen & Møller (1991) presented a theoret-
ical justification for using maximum pseudolikelihood techniques in Markov
type processes (including marked processes), while Baddeley & Turner (2000)
described a technique for obtaining maximum pseudolikelihood estimates for
(marked) spatial point processes using the Berman-Turner device (Berman
& Turner 1992). Goulard et al. (1996) suggested that the chemical activity
be a function of the mark, extending the previous models seen in the liter-
ature. These frequentist inferential approaches provide for point estimation,
but because of the complex distributional properties of the estimates, inter-
val estimation (in general) remains difficult. This paper focuses on continu-
ous mark spaces, the simpler discrete case having been thoroughly studied.
See Baddeley & Møller (1989), Degenhardt (1999), and Stoyan & Penttinen
(2000) for more information on marked spatial point processes.

Bayesian inference for spatial point processes has been notably underrepre-
sented in the literature. In the unmarked case, Heikkinen & Penttinen (1999)
described a non-parametric estimator of the pair potential function based on
a Bayesian smoothing technique. Unfortunately, interval estimation appears
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more challenging. Bognar & Cowles (2004) suggest an efficient MCMC al-
gorithm (utilizing importance sampling) which allows sampling from the full
posterior distribution; the posterior realizations can be used to perform point,
interval, among other inferences. Bognar (2005) described a Gibbsian model
that allowed for spatial inhomogeneity in the density of points. Unfortunately
the latter two papers do not address the incorporation of marks. See Møller
& Waagepetersen (2004) (§9.2) for more information on Bayesian inference
for (unmarked) spatial point patterns.

The aim of this paper is to describe the underlying spatial structure in con-
tinuously marked Gibbsian point processes by 1) modeling the interaction
between points, 2) allowing the interaction between points to depend on the
attached marks, and 3) allow for inhomogeneity in the density of points with
differing marks (the seminal paper by Goulard et al. (1996) addressed the
above issues in a frequentist setting). Unlike the frequentist inferential para-
digm, a Bayesian approach (the focus of this paper) provides the framework
for a plethora of inferences, including interval estimation, not readily obtain-
able via classical methodology.

The remainder of this paper begins with an introduction to marked Gibbs
point processes in Section 2. A Bayesian model is suggested in Section 3,
including a description of the likelihood and prior specification. Bayesian
inference will be based upon MCMC simulations from the full posterior dis-
tribution; the algorithm is outlined in Section 4. Because the model contains
an intractable normalization constant, the complexity of the MCMC algo-
rithm is intensified; the technical and computational challenges are discussed
in Section 5. The spruce dataset is analyzed in Section 6, and concluding
remarks constitute Section 7.

2 Marked Gibbsian point processes

Let V be an arbitrary set; typically V is a bounded subset of R
2 or R

3.
Let (V,B, λ) be a measure space where the σ-field B contains all singletons,
λ denotes Lebesgue measure, and λ(V ) < ∞. Let Ωn denote the set of
all configurations of n points in V . Letting Ω0 = {∅}, the space of finite

point patterns in V is thus Ω
def
= ∪∞

n=0Ωn. Let (Ω,F , µ) be the exponential
space over V (Carter & Prenter 1972) where F is a σ-field on Ω, and the
probability measure µ is assumed to be the distribution of a homogeneous
Poisson process on V with intensity measure λ (i.e. the number of points in
B ∈ B has a Poisson distribution with mean λ(B)). Hence for F ∈ F ,

µ(F ) = exp[−λ(V )]

[

I(∅ ∈ F ) +
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∞
∑

n=1

(

1

n!

∫

V

· · ·

∫

V

I({x1, . . . , xn} ∈ F ) dλ(x1) . . . dλ(xn)

)]

.

A finite (unmarked) point process X on V is a random variable on (Ω,F , µ).
The density of X with respect to µ is denoted by p.

Let (M,M, ν) be a measure space where M is the mark space, ν(M) = 1,
and the σ-field M on M contains all singletons. To construct a finite marked
spatial point process, consider the Cartesian product (V ×M,B⊗M, λ⊗ ν).
Elements of V , M , and V ×M are respectively called points, marks, and
marked points and are denoted by xi, mi, and (xi,mi). A finite marked

point process on V with marks in M is a finite point process on V ×M
def
=

{(ω1, ω2) : ω1 ∈ V, ω2 ∈ M}; i.e. each realization is a member of ΩV×M

(which, loosely speaking, is the set of all possible finite point patterns in
V with marks contained in M). The marked Poisson point process can be
considered as a Poisson process (with intensity λ) on V with marks being

i.i.d. with distribution ν. In what follows, let Γ
def
= ΩV×M , G

def
= B ⊗M =

{ω1 × ω2 : ω1 ∈ B, ω2 ∈ M}, and define η to be the unique probability on
(Γ,G) such that η(A1 ×A2) = λ(A1)ν(A2) for all A1 ∈ B and A2 ∈ M.

Let x = (x1, . . . , xn) denote the point locations and m = (m1, . . . ,mn) the
respective marks. According to Goulard et al. (1996), the distribution of
the marked Gibbs process (with respect to the marked Poisson process with
intensity η) is

p(x,m) = Z−1 exp[−U(x,m)]

where U(x,m) is an energy function and

Z =

∫

Γ

exp[−U(x,m)] dη(x,m)

is a partition function which normalizes p.

A marked pairwise interacting point process is a special case of a marked
Gibbs point process where the energy function is completely determined by
the mark chemical activity function and the mark pair potential function.
Assume that the energy function takes the form

U(x,m) =
n
∑

i=1

α(mi) +
n−1
∑

i=1

n
∑

j=i+1

φ(xi, xj ,mi,mj).

The mark chemical activity function α describes the ability of the system
to absorb a point with mark m, while the mark pair potential function φ
characterizes the interaction between pairs of points by a function of the
inter-point Euclidean distance ‖xi − xj‖ and respective marks mi and mj.
Allowing for inhomogeneity in the mark chemical activity function (e.g. al-
lowing α(mi) 6= α(mj) if mi 6= mj) enables the density of points to depend
upon the marks.
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If the number of points n is not conditioned upon, then allowing φ < 0 may
produce an infinite normalizing constant Z and cause simulation difficulties
(Kelly & Ripley 1976, Gates & Westcott 1986, Møller 1999). Thus, in what
follows it is assumed that φ is non-negative, gauranteeing Z <∞.

3 Model Details

In modeling the mark pair potential function φ, consider a family of mark
pair potential functions φθ, indexed by a parameter vector θ = (θ1, . . . , θm),
where φθ : V ×V ×M ×M → [0,∞). It is assumed without loss of generality
that θ if of fixed, known dimension. As a tangible example, consider the
mark pair potential function (which is utilized in Section 6)

φθ(xi, xj ,mi,mj) =







∞ if eij ≤ bhc
h if bhc < eij ≤ b
0 if eij > b

(1)

where

eij = ‖xi − xj‖

(

mi +mj

2m̄

)−d

, (2)

m̄ = n−1
∑n

i=1mi, and θ = (bhc, b, h, d) (Strauss 1975, was first to suggest a
similar potential function for unmarked point patterns). For two points with
“average” marks (i.e. (mi +mj)/2m̄ = 1), the hard-core interaction distance

bhc describes the minimum inter-point distance, the interaction distance b
characterizes the distance at which two points cease to interact, and the
Straussian parameter h describes the strength of interaction between pairs
of points (h > 0 indicates spatial regularity, while h = 0 implies no spatial
interaction). The scaling parameter d (see Ogata & Tanemura 1985) in effect
scales bhc and b according to the marksmi andmj (see Section 6 for a detailed
interpretation of d).

The mark chemical activity function α is assumed to be a member of the
parametric family of mark chemical activity functions αψ, indexed by a pa-
rameter vector ψ = (ψ1, . . . , ψl), where αψ : M → [0,∞). More specifically,
assume that αψ describes a one-dimensional partition model where the mark
space M is partitioned via Voronoi tesselations (Voronoi 1908, Green & Sib-
son 1978). A Voronoi tessellation of M is defined by, say, k + 2 generating

points C0 < C1 < · · · < Ck < Ck+1 where each generating point Ci ∈ M
defines a region which consists of all points in M closer in Euclidean dis-
tance to Ci than to any other generating point. By associating a (constant)
height, say Hi ≥ 0, with the region defined by Ci (i = 0, 1, . . . , k, k + 1),
a non-parametric approximation of the mark chemical activity function α
is obtained (it is assumed that H0 = Hk+1 = 0). An example of αψ on
M = (0, 10) where k = 4, C0 = 0.5, C1 = 1, C2 = 2, C3 = 4, C4 = 6.5,
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Figure 2: Example of a mark chemical activity function αψ when k = 4. See
text for details.
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C5 = 8 and H1 = 0.03, H2 = 0.17, H3 = 0.07, H4 = 0.09 is depicted in Fig-
ure 2. The large dots represent the six generating points C0, C1, . . . , C4, C5

(each respective region is depicted with parentheses). Partition models have
been explored in the Statistics literature by Bognar (2005), Heikkinen &
Arjas (1998), among others.

Using the above parameterization, the energy function becomes

Uθ,ψ(x,m) =

n
∑

i=1

αψ(mi) +

n−1
∑

i=1

n
∑

j=i+1

φθ(xi, xj ,mi,mj)

where αψ(mi) is the height of the region that contains mark mi (i.e. if mi is
closest to Cj , then αψ(mi) = Hj), and φθ is the mark pair potential function
(perhaps of the form (1)). Hence, the marked Gibbs distribution of (x,m)
conditional on (θ, ψ) is

p(x,m|θ, ψ) = Z−1(θ, ψ) exp[−Uθ,ψ(x,m)]

where Uθ,ψ describes the total energy and

Z(θ, ψ) =

∫

Γ

exp[−Uθ,ψ(x,m)] dη(x,m)

is an intractable normalizing constant depending on θ and ψ.
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If there are k regions in the tessellation αψ, then the likelihood becomes

L(θ, ψ) = Z−1(θ, ψ) exp



−
n
∑

i=1

αψ(mi) −
n−1
∑

i=1

n
∑

j=i+1

φθ(xi, xj ,mi,mj)



 (3)

where θ = (θ1, . . . , θm), ψ = (C0, C1, . . . , Ck, Ck+1, H1, . . . , Hk)
def
= (C,H),

and Z(θ, ψ) is an intractable function of the parameters (making exact like-
lihood based inference impossible). It is assumed without loss of generality
that θ has fixed, known dimension m. Because k is (typically) unknown, a
heirarchical model is implemented with a prior distribution on k, say p(k).
With k regions, the external hidden variates (C,H) are assumed to be a pri-
ori independent of θ. A priori, C is assumed to follow some point process on
M ; typically C is assumed to follow a binomial process on M (i.e. a Poisson
process conditional on k). The region heights H1, . . . , Hk are i.i.d. and are

independent of C, a priori; for example H1, . . . , Hk
iid
∼ Unif(0, Hu) for some

Hu > 0, say. Because the process (C,H) is a priori independent of θ, the
joint prior is p(θ, ψ) = p(θ, C,H) = p(θ)p(C,H |k)p(k). It may be possible to
allow for non-independent heights H , or for a more complex process for the
generating points C, if desired.

In contrast to the non-parametric model set forth, it may be possible, a
priori, to model the mark chemical activity function with a smooth function,
possibly reducing the number of parameters. Although the complexity of
the model may be reduced, such an approach may provide for less modeling
flexibility.

4 Posterior Simulation

Bayesian inference will be based upon MCMC simulations from the full pos-
terior distribution p(θ, ψ|x,m) ∝ L(θ, ψ)p(θ, ψ). Since the number of regions
in the tessellation k will be dictated by the data, a reversible jump MCMC
update (Green 1995) will be used when a region is either added (increasing
the dimension of the parameter space by two) or removed (reducing the di-
mensionality by two). For moves in which the dimension of the parameter
space remains unchanged, a standard Metropolis-Hastings update (Metropo-
lis et al. 1953, Hastings 1970) it utilized.

The algorithm begins by arbitrarily choosing the number of regions k(0) for
the Voronoi tessellation of M . Then, given k(0), an arbitrary starting value
for the sampler can be chosen, say (θ(t), ψ(t)) = (θ(t), C(t), H(t)) where t = 0,

θ(t) = (θ
(t)
1 , . . . , θ

(t)
m ), C(t) = (C

(t)
0 , . . . , C

(t)

k(t)+1
), and H(t) = (H

(t)
1 . . . , H

(t)

k(t)).
The algorithm proceeds by randomly choosing a move type; with probability
ap + rp the sampler attempts to change the number of regions in the tessel-
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lation, and with probability 1 − ap − rp a non-dimension changing move is
chosen.

If the number of regions in the tessellation is to remain unchanged, denote

the current parameter vector (θ(t), ψ(t)) by ζ(t) = (ζ
(t)
1 , . . . , ζ

(t)

m+2k(t)+2
). Ran-

domly choose (independent of ζ(t)) an element, say ζ
(t)
i , to update (each

element need not have equal probability of being chosen). Draw a candi-
date value, say ζ∗i , from some proposal distribution qi(ζ

∗
i |ζ

(t)) and define

ζ∗ = (ζ
(t)
1 , . . . , ζ

(t)
i−1, ζ

∗
i , ζ

(t)
i+1, . . . , ζ

(t)

m+2k(t)+2
). Accept the proposal, that is let

ζ(t+1) = ζ∗, with probability

α = min

[

1,
p(ζ∗|x,m)

p(ζ(t)|x,m)

qi(ζ
(t)
i |ζ∗)

qi(ζ∗i |ζ
(t))

]

z = min

[

1,
L(ζ∗)

L(ζ(t))

p(ζ∗)

p(ζ(t))

qi(ζ
(t)
i |ζ∗)

qi(ζ∗i |ζ
(t))

]

= min

[

1,
exp[−Uζ∗(x,m)]Z(ζ(t))

exp[−Uζ(t)(x,m)]Z(ζ∗)

p(ζ∗)

p(ζ(t))

qi(ζ
(t)
i |ζ∗)

qi(ζ∗i |ζ
(t))

]

, (4)

otherwise reject ζ∗ and let ζ(t+1) = ζ(t). Increment t and randomly choose
another move type.

Regions in the tessellation are added and removed with probability ap and
rp, respectively. Suppose there are k(t) regions currently in the tessellation.

To add a region, choose u1, say, uniformly in (C
(t)
0 , C

(t)

k(t)+1
) and let C′ = u1.

Then, choose u2, say, from some proposal density q(u2|ζ
(t)) and let H ′ = u2.

Letting ζ∗ = (ζ(t), C′, H ′), accept the new region, that is let ζ(t+1) = ζ∗,
with probability (see Green 1995, for details)

α = min

[

1,
exp[−Uζ∗(x,m)]Z(ζ(t))

exp[−Uζ(t)(x,m)]Z(ζ∗)

p(ζ∗)

p(ζ(t))

rp(C
(t)

k(t)+1
− C

(t)
0 )

ap(k(t) + 1)q(H ′|ζ(t))
Ja

]

,(5)

where the Jacobian Ja is

Ja =

∣

∣

∣

∣

∂ζ∗

∂(ζ(t), u1, u2)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂(ζ(t), C′, H ′)

∂(ζ(t), u1, u2)

∣

∣

∣

∣

= 1.

The removal of a region involves randomly choosing (with equal probabil-

ity) one of the k(t) regions C
(t)
1 , . . . , C

(t)

k(t) . If C
(t)
i was chosen, let ζ∗ =

(θ(t), C(t)\C
(t)
i , H(t)\H

(t)
i ). Accept the removal, that is let ζ(t+1) = ζ∗, with

probability

α = min

[

1,
exp[−Uζ∗(x,m)]Z(ζ(t))

exp[−Uζ(t)(x,m)]Z(ζ∗)

p(ζ∗)

p(ζ(t))

apk
(t)q(H

(t)
i |ζ∗)

rp(C
(t)

k(t)+1
− C

(t)
0 )

Jr

]

,(6)
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where the Jacobian Jr is the inverse of the Jacobian Ja had we been at-
tempting to add the generating point C

(t)
i and respective height H

(t)
i to

ζ∗. Hence, Jr = 1. For notational and computational convenience, re-
order and relabel the generating points in ascending order after executing an
a−move or r−move. For example, suppose the region C′ (and mark H ′) is

successfully added in an a−move, yielding ζ(t+1) = (ζ(t), C′, H ′). If C
(t)
i−1 <

C′ < C
(t)
i , then let ζ(t+1) = (θ(t+1), ψ(t+1)) = (θ(t+1), C(t+1), H(t+1)) where

θ(t+1) = θ(t), C(t+1) = (C
(t)
0 , . . . , C

(t)
i−1, C

′, C
(t)
i , . . . , C

(t)

k(t)+1
), and H(t+1) =

(H
(t)
1 , . . . , H

(t)
i−1, H

′, H
(t)
i , . . . , H

(t)

k(t) ).

Because the intractable functions Z(ζ(t)) and Z(ζ∗) do not cancel in the
acceptance probabilities (4), (5), and (6), the intractable ratio

r
def
=

Z(ζ(t))

Z(ζ∗)
(7)

must be estimated within every iteration of the sampler.

5 Estimation of the intractable ratio

As motivated by Bognar (2005) and Bognar & Cowles (2004), the intractable
ratio r in (7) can be estimated by importance sampling (Smith & Gelfand
1992). Crucial to the implementation of importance sampling is the MCMC
algorithm of Geyer & Møller (1994) for simulating (marked) spatial point pat-
terns (importance samples) from, say, p(x,m|ζ′) = Z−1(ζ′) exp[−Uζ′(x,m)]
for any ζ′ = (θ′, ψ′) = (θ′1, . . . , θ

′
m, C

′
0, . . . , C

′
k′+1, H

′
1, . . . , H

′
k′) (where Z(ζ′)

is finite). In the literature, Z−1(ζ′) exp[−Uζ′(x,m)] is known as the im-

portance sampling density. The algorithm is outlined later in this Section;
fortunately, knowledge of Z(ζ′) is not needed.

Suppose importance samples (x(l),m(l)) = (x
(l)
1 , . . . , x

(l)

n(l) ,m
(l)
1 , . . . ,m

(l)

n(l))
(l = 1, . . . , L) are simulated (after burn-in) from the importance sampling
density p(x,m|ζ′). Then r = Z(ζ(t))/Z(ζ∗) can be estimated by

r̂
def
=

L
∑

l=1

exp[−Uζ(t)(x
(l),m(l))]

exp[−Uζ′(x(l),m(l))]

(

L
∑

l=1

exp[−Uζ∗(x(l),m(l))]

exp[−Uζ′(x(l),m(l))]

)−1

. (8)

If the chain is ergodic, then

1

L

L
∑

l=1

exp[−Uζ(t)(x
(l),m(l))]

exp[−Uζ′(x(l),m(l))]

a.s.
→

∫

Γ

exp[−Uζ(t)(x,m)]

exp[−Uζ′(x,m)]
p(x,m|ζ′) dη(x,m)

=
1

Z(ζ′)

∫

Γ

exp[−Uζ(t)(x,m)] dη(x,m)
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=
Z(ζ(t))

Z(ζ′)
.

The denominator of (8) converges almost surely to Z(ζ∗)/Z(ζ′), hence r̂
a.s.
→ r.

A poor choice of importance sampling density p(x,m|ζ′) will require many
more importance samples to approximate r for any given degree of accu-
racy. In other words, to accurately estimate r with a computationally feasible

number of importance samples requires that p(x,m|ζ′) is concentrated near
p(x,m|ζ∗) and p(x,m|ζ(t)). Informally speaking, this is accomplished by
choosing a ζ′ close to both ζ(t) and ζ∗. Hence, the proposal density should
be concentrated near ζ(t), ensuring that ζ∗ is relatively close to ζ(t), allowing
ζ′ to be chosen close to both ζ(t) and ζ∗. A proposal density not concentrated
near ζ(t) can cause poor estimates of r, which can induce poor mixing (as is
well known, such a proposal density can lead to low acceptance rates, causing
poor mixing). On the other hand, if the proposal density is too highly con-
centrated about ζ(t), the sampler will traverse the sample space very slowly
and have poor mixing properties. The proposal density, therefore, should
be concentrated, but not too concentrated, near ζ(t) to enable optimal sam-
pler mixing. Clearly, choosing proposal densities is important; see Bognar &
Cowles (2004) for more guidance.

Although Geyer & Møller (1994) did not explicitly describe an algorithm
for simulating continuously marked spatial point patterns, the generality of
their algorithm does allow for such simulations (as noted by the authors). A
simple implementation of Geyer and Møller’s algorithm for simulating from
p(x,m|ζ′) is now described. The sampler is initialized by letting l = 0 and

simulating an unmarked spatial point pattern x(l) = (x
(l)
1 , . . . , x

(l)

n(l)) with,

say, n(l) = n points distributed uniformly in V . Then, generate marks

m(l) = (m
(l)
1 , . . . ,m

(l)

n(l)) (independently of x(l)) uniformly in the interval
(C′

min, C
′
max) where C′

min = (C′
0 + C′

1)/2 and C′
max = (C′

k′ + C′
k′+1)/2).

Within each iteration the sampler randomly chooses between four move types:
1) add a (marked) point to the pattern, 2) remove a point, 3) move a point,
and 4) change a mark. Denote the move probabilities by aimpp , rimpp , ximpp , and

mimp
p respectively, where aimpp + rimpp + ximpp +mimp

p = 1 and (for simplicity)

aimpp = rimpp . To move a point, randomly choose a point (all points are chosen

with equal probability), say x
(l)
i , from the current pattern x(l), propose a new

location x∗i uniformly in V , and let x∗ = (x
(l)
1 , . . . , x

(l)
i−1, x

∗
i , x

(l)
i+1, . . . , x

(l)

n(l)).

Accept the move, that is let (x(l+1),m(l+1)) = (x∗,m(l)), with probability
min[1, exp[−Uζ′(x

∗,m(l))]/ exp[−Uζ′(x
(l),m(l))]]. To change a mark, ran-

domly choose (with equal probability) a mark, say m
(l)
i , generate a can-

didate mark m∗
i uniformly in (m

(l)
i − ǫ,m

(l)
i + ǫ) for some ǫ > 0, and let

m∗ = (m
(l)
1 , . . . ,m

(l)
i−1,m

∗
i ,m

(l)
i+1, . . . ,m

(l)

n(l)). Accept the move with prob-

ability min[1, exp[−Uζ′(x(l),m∗)]/ exp[−Uζ′(x(l),m(l))]]. To add a marked
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point to the pattern, generate a new point x∗ uniformly in V , choose a
mark m∗ uniformly in (C′

min, C
′
max), and let (x(l+1),m(l+1)) = (x∗,m∗) =

(x(l), x∗,m(l),m∗) with probability min[1, (exp[−Uζ′(x∗,m∗)]λ(V ))/
(exp[−Uζ′(x(l),m(l))](n(l) +1))]. To remove a point, randomly choose a point

(with equal probability), say x
(l)
i . Accept the removal of the marked point,

that is let (x(l+1),m(l+1)) = (x∗,m∗) = (x(l)\x
(l)
i ,m

(l)\m
(l)
i ), with probabil-

ity min[1, (exp[−Uζ′(x∗,m∗)]n(l))/(exp[−Uζ′(x(l),m(l))]λ(V ))]. After each
update, randomly choose another move type and repeat. Note that it is
possible to informally observe convergence (and determine an appropriate
burn-in period) of the MCMC sampler by tracking number of points n(l) and
the total energy Uζ′(x

(l),m(l)) over time l.

6 Analysis of the Norway spruce dataset

The Norway spruce marked spatial point pattern (x,m) = (x1, . . . , x134,
m1, . . . ,m134), depicted in Figure 1, was observed in a 56 × 38 meter plot
of forest V . Since spatial regularity appears to be present, and since there
is likely a “minimum” inter-tree distance needed to sustain life, the mark
pair potential function (1) was utilized to model the spatial interaction. For
simplicity, the hard-core interaction distance bhc was fixed at 1.044031 me-
ters (= mini6=j ‖xi − xj‖) yielding θ = (b, h, d). The interaction distance b
describes the distance at which pairs of trees cease to interact, the Straussian
parameter h (assume h > 0 to ensure that Z is finite) describes the strength
of interaction (inhibition), and the scaling parameter d describes how b and
bhc scale according to the attached marks. As before, a one-dimensional
Voronoi tessellation αψ (described by the external process (C,H)) is used to
model the mark chemical activity function α where it is assumed that the
mark space M = (0, 50).

6.1 Prior specification

Given k, there are 2k+5 model parameters; the mark chemical activity func-
tion parameters ψ = (C,H) = (C0, C1, . . . , Ck, Ck+1, H1, . . . , Hk) and the
mark pair potential function parameters θ = (b, h, d). The priors were spec-
ified as follows: b ∼ Unif(1.044031 = bmin, 10 = bmax), h ∼ N(µh = 1, σh =
100) (truncated to R+), d ∼ Unif(−1 = dmin, 5 = dmax), k ∼ Pois(λk =

5) (truncated to 1, 2, . . .), C0, C1, . . . , Ck, Ck+1|k
iid
∼ Unif(0 = Cmin, 50 =

Cmax), and H1, . . . , Hk|k
iid
∼ Unif(0 = Hmin, 2 = Hmax).

The prior specification on the heirarchical part of the model effects the
amount of smoothing of the mark chemical activity function. Suppressing
the number of regions k, or decreasing the variance of the Hi’s, or both, will



12

produce stronger smoothing. As described by Bognar (2005) (in a differ-
ent setting), placing very diffuse priors on the Hi’s can also produce strong
smoothing (the same phenomenon applies here). Hence, the least amount
of smoothing occurs with a moderately diffuse prior on the Hi’s and with a
λk that encourages multiple tessellation regions. Interestingly, Green (1995)
noted a similar type of phenomenon in his analysis of a one-dimensional mul-
tiple change point problem, as did Bognar (2005) in an analysis of a spatially
inhomogeneous Gibbsian point process.

6.2 MCMC details

To perform inference, we seek to simulate from the full posterior distribution
p(θ, ψ|x,m). To simplify the construction of proposal densities, only one
component of the parameter vector was updated at a time. At the beginning
of each iteration, a move type was randomly chosen: update the interac-
tion distance (b−move), update the Straussian parameter (h−move), update
the scaling parameter (d−move), move a randomly chosen generating point
(C−move), update the height of a region (H−move), add a region to the tes-
sellation (a−move), and remove a region from the tessellation (r−move). The
move probabilities were, respectively, bp = hp = dp = 0.10, Cp = Hp = 0.15,
and ap = rp = 0.20.

At the beginning of iteration t, suppose the current parameter vector is ζ(t) =
(θ(t), ψ(t)). If a b−move is selected, obtain a candidate interaction distance b∗

from a Unif(b(t) − 0.5, b(t) + 0.5) distribution and let ζ∗ = (b∗, h(t), d(t), ψ(t)).
The intractable ratio r = Z(ζ∗)/Z(ζ(t)) in the Metropolis-Hastings accep-
tance probability (4) must be estimated before accepting/rejecting the candi-
date. To this end, L = 5,000 point patterns (following a 2,000 iteration burn-
in) were generated from p(x,m|ζ′), where ζ′ = (0.5[b∗+b(t)], h(t), d(t), ψ(t)) =
0.5[ζ∗ + ζ(t)], using the algorithm of Geyer & Møller (1994). The authors
noted that the algorithm mixes most rapidly for large aimpp and rimpp ; hence

ximpp = mimp
p = 0.15 and aimpp = rimpp = 0.35 were used. The simulated

marked spatial point patterns (x(l),m(l)) (l = 1, . . . , L) from p(x,m|ζ′) were
used to estimate r via (8), the estimate was plugged into the acceptance
probability (4), and the candidate b∗ was accepted/rejected accordingly. Af-
ter incrementing t, another move type was randomly chosen and executed.
If b∗ /∈ (bmin = 1.044031, bmax = 10), then the candidate b∗ was rejected via
the prior.

The last simulated post burn-in pattern, (x(L),m(L)), was used to initial-
ize Geyer and Møller’s algorithm in the subsequent iteration, allowing a
shorter (2,000 iteration) burn-in period. Since the values of ζ′ experience
relatively little change from iteration to iteration, initializing the algorithm
with (x(L),m(L)) allows for a shorter burn-in period than starting from, say,
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a binomial process with uniform marks in (Cmin, Cmax). Trace plots of n and
the total energy Uζ′ over time l confirm the feasibility of this computational
shortcut.

The h−move, d−move, C−move, and H−move proceeded similarly. For an
h−move, h∗ was drawn from a Unif(h(t) − 0.75, h(t) + 0.75) distribution,
while d∗ was drawn from a Unif(d(t) − 0.75, d(t) + 0.75) distribution in a

d−move. For a C−move, a generating point, say C
(t)
i , was randomly chosen,

and a candidate location C∗
i was drawn from a Unif(C

(t)
i − 2.5, C

(t)
i + 2.5)

distribution conditional on C∗
i ∈ (C

(t)
i−1, C

(t)
i+1) (i.e. if C∗

i /∈ (C
(t)
i−1, C

(t)
i+1)

then the candidate was rejected via the proposal). For an H−move, one of

the current heights, say H
(t)
i , was randomly chosen, and a candidate height

H∗
i was drawn from a Unif(H

(t)
i − 0.075, H

(t)
i + 0.075) distribution. In each

case, the importance sampling locale was ζ′ = 0.5[ζ(t) + ζ∗]. Note that if
h∗ < 0, d∗ /∈ (−1, 5), or H∗

i /∈ (0, 2), then the candidate was rejected by the
prior. The Metropolis-Hastings acceptance rates were 20.3%, 50.9%, 40.0%,
58.9%, and 51.4% for a b−move, h−move, d−move, C−move, and H−move
respectively.

An a−move proceeded by choosing a new generating point C′ uniformly in
(Cmin, Cmax), drawing a candidate height H ′ from
q(H ′|ζ(t)) ∼ Unif(αψ(t)(C′) − 0.05, αψ(t)(C′) + 0.05) (i.e. propose a height
uniformly within 0.05 of the current height at C′), generating L = 5,000
point patterns from p(x,m|ζ′) where ζ′ = (θ(t), C(t), H(t)), estimating r via
(8), plugging the estimate into (5), and accepting the new region with prob-
ability (5). If H ′ /∈ (0, 2), then the candidate was rejected via the prior.
An r−move proceeded as in Section 4 where r was estimated via (8) using

ζ′ = (θ(t), C(t)\C
(t)
i , H(t)\H

(t)
i ). If an r−move was attempted when k(t) = 1,

the move was rejected by the prior and ζ(t+1) = ζ(t).

Six separate samplers were run in parallel on six Intel Xeon 2.4GHz work-
stations running Linux. With the coding was in C++, each machine exe-
cuted 25,000 posterior iterations, including a 5,000 iteration burn-in (the post
burn-in iterations were combined). It took approximately 31 hours to per-
form the 150,000 updates (approximately 186 total computing hours). The
Bayesian Output Analysis (BOA) software (Smith 2001) was used to analyze
the 120,000 post burn-in iterations. Trace plots of b, h, and d show good
mixing behavior: the Gelman and Rubin (Gelman & Rubin 1992, Brooks &
Gelman 1998) corrected scale reduction factors for b, h, and d were 1.010,
1.001, and 1.015 respectively. Because of the changing dimensionality, eval-
uating mixing and convergence of the external variates C and H is more
difficult (see Brooks & Giudici 1999, for current work in this area).

Because the intractable ratio r in the acceptance probability is estimated,
this implies that the established theory for MCMC samplers does not ap-



14

Figure 3: Marginal posterior distribution of the interaction distance b.
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ply. Nevertheless, based upon anecdotal evidence from simulation studies
(not described herein), the aforementioned approximation does not appear
to prevent the sampler from converging to a distribution that closely resem-

bles the true posterior. From a practical point of view, this is probably of
little consequence.

6.3 Results

The estimated marginal posterior distribution of the interaction distance b
is displayed in Figure 3. The posterior mean of b is approximately 2.123
meters (Monte Carlo error 0.008), with median and mode of 2.017 and 2.008
meters respectively. The 95% equal tail interval is (1.810, 2.874) meters. The
jagged nature of the marginal posterior is due to φθ, and hence the marginal
posterior distribution of b, p(b|x,m), being discontinuous (Bognar & Cowles
2004). In short, the spruce trees cease to interact with one another at a
distance of (approximately) two meters.

Figure 4 displays the estimated marginal posterior distribution of the
Straussian parameter h. The estimated posterior mean, median, and mode of
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Figure 4: Marginal posterior distribution of the Straussian parameter h.
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h are 1.386 (Monte Carlo error 0.010), 1.393, and 1.445 respectively. The 95%
equal tail interval is (0.629, 2.206). The amount of uncertainty in h is sur-
prising; however, the ability to reliably obtain interval estimates (and make
such an observation) demonstrates the favorability of the current approach.

Figure 5 displays the estimated marginal posterior distribution of the scaling
parameter d. The estimated posterior mean, median, and mode of d are 1.002
(Monte Carlo error 0.010), 0.960, and 0.893 respectively. The 95% equal tail
interval is (0.187, 1.675). The high posterior probability that d is positive,
i.e. P (d > 0|x,m) ≃ 0.997, indicates that large trees (with large diameter
trunks) have larger bhc and b than smaller trees. For instance, recall that the
posterior mean of b is 2.123. Now, for trees with a larger than average (i.e.
larger than m̄ ≃ 25) trunk diameter, say (mi +mj)/2 = 30, then from (2),
eij = ‖xi−xj‖[(mi+mj)/(2m̄)]−d = ‖xi−xj‖(30/25)−1.002 = ‖xi−xj‖0.833.
This indicates, from (1), inflated interaction and hard-core distances; namely
φθ(xi, xj ,mi,mj) = h when bhc < eij ≤ b ⇐⇒ bhc/0.833 < ‖xi − xj‖ ≤
b/0.833 ⇐⇒ 1.200bhc < ‖xi − xj‖ ≤ 1.200b. In other words, a pair of trees
with an average trunk diameter of 30 cm have a hard-core interaction distance
of 1.200bhc = 1.200(1.044031) = 1.253 meters and interaction distance of
1.200b = 1.200(2.123) = 2.548 meters. Similarly, pairs of trees with a smaller



16

Figure 5: Marginal posterior distribution of the scaling parameter d.
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than average trunk diameter, say (mi + mj)/2 = 18, have hard-core and
interaction distances of 0.720(1.044031) = 0.752 and 0.720(2.123) = 1.529
meters respectively.

The estimated marginal posterior distribution of the number of regions in the
tessellation k is depicted in Figure 6. As alluded to earlier, the prior on the
Hi’s was not overly diffuse (which suppresses k) or informative (which allows
little variability in the Hi’s), producing a desirable amount of smoothing of
the mark chemical activity function (displayed in Figure 7 below).

To estimate the mark chemical activity function, the height of αψ(t) was
recorded, for each t, at 200 equally spaced grid points in M = (0, 50). At
each grid point, the (pointwise) posterior mean and 95% equal tail credible
set were found from the 120,000 evaluations. Figure 7 displays the empir-
ical mark chemical activity function (as a histogram), the posterior mean
(solid line), and 95% credible set (dashed lines) of αψ. Usefully, the posterior
mean of αψ looks like a smoothed version of the empirical mark chemical
activity function. In addition, the ability to obtain Bayesian pointwise cred-
ible sets allows one to witness, unlike the frequentist approaches, the (large)
uncertainty in the point estimates, once again highlighting the additional
inferential depth available in the current setting.
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Figure 6: Marginal posterior distribution of the number of regions in the
Voronoi tessellation k.
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7 Discussion

Although computationally intensive, Bayesian inference for continuously
marked Gibbsian point processes is now feasible with careful, efficient coding
of the requisite MCMC sampler. A Bayesian approach enables point estima-
tion, but unlike the frequentist techniques where the sampling distributions of
the estimates are not well understood (complicating interval estimation), the
Bayesian paradigm provides a convenient framework for interval estimation
as well as a variety of other inferences.

As suggested by Ogata & Tanemura (1985) (and Goulard et al. 1996), adding
the scaling parameter d is a convenient means of incorporating marks into
the model. A Bayesian approach allows one to approximate the posterior
probability that d > 0 (e.g. the posterior probability that large trees have a
larger distance of interaction than small trees). In the frequentist paradigm,
testing for such scaling remains unclear due to the complex distributional
properties of the estimates.

Goulard et al. (1996) suggested that the chemical activity function (which
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Figure 7: Estimated posterior mean and 95% pointwise credible set of the
mark chemical activity function αψ.
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regulates the density of points in the pattern) should be a function of the
marks. While the authors were able to estimate the mark chemical activity
function, the complex distributional properties of the estimates impeded the
construction of (pointwise) confidence intervals. A Bayesian approach, on
the other hand, allows the construction of (pointwise) credible sets for the
mark chemical activity function, enabling an assessment of variability.

The prior on the tessellation region heights Hi (i = 1, . . . , k) (and on the
number of regions k) influences the amount of smoothing of the mark chem-
ical activity function. The prior p(θ, ψ) on the model parameters, there-
fore, should not only reflect ones prior knowledge, but the desired amount of
smoothing.
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